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Abstract

We extend the locus problems discussed in [9], [10] and [12], for a quadric surface when
the �xed point is at an in�nity. This paper will bene�t those students who have backgrounds
in Linear Algebra and Multivariable Calculus. As we shall see that the transformation
from a quadric surface

P
to its locus surface � is a linear transformation. Consequently,

how the eigenvectors are related to the position of the �xed point at an in�nity will be
discussed.

1 Introduction

In [10], we consider the following:
Original problem: We are given a �xed point A and a generic point C on a surface

�. We let the line l pass through A and C and intersect a well-de�ned D on �, we want to

determine the locus surface generated by the point E, lying on CD, which satis�es
��!
ED = s

��!
CD;

where s is a real number parameter.
We call the point D to be the antipodal point of C, and we often write the locus point as

E = sC+(1�s)D in our discussions with no confusions. We provide proofs in this paper, where
the discussions originated from [12], how the locus surface for a quadric shall behave when the
�xed point A = (� cosu0 sin v0; � sinu0 sin v0; � cos v0) is at an in�nity; we remark that � ! 1
and the point A depends on the angles u0 and v0: We recall from [12] that the locus surfaces,
when the surface � is an ellipsoid or an hyperboloid with two sheets, we have found the exact
expressions for the antipodal point Dinf corresponding to point C on � when A is at an in�nity.
In Sections 2 and 3, we discuss how the locus problems for an ellipsoid or a hyperboloid with
two sheets can be described as a linear transformation and how their respective eigenvectors
and eigenvalues are related to the behaviors of the corresponding locus surfaces. In Section 4,
we give a geometric descriptions for the locus surfaces when the parameter s is a large number,
including when s!1:
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2 The Locus Surface When Fixed Point is at an In�nity

If � is the quadric surface F (x; y; z) = 0 we recall from [10] how we �nd the locus surface of �
with respect to the �xed point A = (x0; y0; z0). We represent a generic point on � as

C =

24 x̂ŷ
ẑ

35 : (1)

We used Vieta's formulas to calculate the coordinates of point D; denoted by (x1; y1; z1),
which is the antipodal point of C and is the intersection between the quadric � and the line
l passing through A and C. The point E = sC + (1 � s)D; which is denoted by (xe; ye; ze),
generates the locus surface that we will explore in this paper. We remark that once the �xed
point A is chosen, since A and C together determine the point E, the locus surface is thus �xed
too. We write the locus surface as follows:

�A(C) =

24 xeye
ze

35 =
24 sx̂+ (1� s)x1sŷ + (1� s)y1
sẑ + (1� s)z1

35 :
Unless otherwise speci�ed in this paper, we focus on the parameter s > 1 in this paper. In
what follows, we shall simplify use � for a locus surface with no confusion.
We summarize from [12] how we �nd the locus of � with respect to a �xed point A, which

is at an in�nity.

1. Let the spherical coordinate for the �xed point A be (� cosu0 sin v0; � sinu0 sin v0; � cos v0).
If we de�ne two auxiliary functions, namely

k
:
= k(x̂; ŷ) =

ŷ � y0
x̂� x0

; and (2)

m
:
= m(x̂; ẑ) =

ẑ � z0
x̂� x0

(3)

2. We follow the usual procedure to �nd the intersection between the line AC and the
quadric surface at D = (x1; y1; z1) respectively by adopting the Vieta's formula.

3. Next we let �!1 to obtain the corresponding intersection pointDinf = (x1 inf ; y1 inf ; z1 inf) :

4. The corresponding locus surface, is de�ned as Einf = (xe inf ; ye inf ; ze inf) where

xe inf = sx̂+ (1� s) (x1 inf)
ye inf = sŷ + (1� s) (y1 inf)
ze inf = sẑ + (1� s) (z1 inf) :

If A = (� cosu0 sin v0; � sinu0 sin v0; � cos v0) : Let us note that (2) and (3) become,

k =
ŷ � � sinu0 sin v0
x̂� � cosu0 sin v0

; and (4)

m =
ẑ � � cos v0

x̂� � cosu0 sin v0
: (5)

2
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5. We �x the angles u0 2 (0; 2�) � f�2 ;
3�
2
g and v0 2 (0; �) ; and let the point A going to

in�nity in the direction (sin v0 cosu0; sin v0 sinu0; cos v0). Taking the limit of (4) and (5)
when �!1 we get,

k0
:
= k(u0; v0) =

sin v0 sinu0
sin v0 cosu0

= tanu0; (6)

and
m0

:
= m(u0; v0) =

cos v0
sin v0 cosu0

= cot v0 sec u0: (7)

6. By using the followings and substitute into the implicit equation of the quadric, F (x; y; z) =
0;

y = ŷ + k0(x� x̂); and
z = ẑ +m0(x� x̂);

we follow the Vieta's formula to �nd the x{coordinate of the the antipodal point D0
inf ,

say x01inf , by calculating the roots of the polynomial

p(x) = a2x
2 + a1x+ a0;

where a0; a1 and a2 are real numbers.

7. For a given s, the locus surface generated by point E 0inf = sC + (1� s)D0
inf is de�ned as

�0
inf(s; u0; v0) =

24 x0e infy0e inf
z0e inf

35 =
24 sx̂+ (1� s)x01 infsŷ + (1� s)y01 inf
sẑ + (1� s)z01 inf

35 :
It is clear that Dinf = D

0
inf , and therefore Einf = E

0
inf , so the locus surfaces �inf(s; u0; v0) =

�0
inf(s; u0; v0).

3 Locus Surfaces and Linear Transformations

Theorem 1 Let � be a quadric surface, and let Ainf(u0; v0) be the �xed point at an in�nity in
the direction of (cosu0 sin v0; sinu0 sin v0; cos v0), C 2 � and Dinf be the \antipodal" point of
C corresponding to Ainf(u0; v0) as described in previous sections. Then there exists an a�ne
transformation AD : R3 ! R3 such that AD(C) = Dinf .

Proof.
Notice that for a general quadric surface, after applying the Vieta's formula to the polyno-

mial p(x) = a2x
2 + a1x+ a0 when using (6) and (7), we obtain

x1 inf = �
a1
a2
� x̂

y1 inf = ŷ + k0(x1 inf � x̂)

= ŷ + k0

�
�a1
a2
� 2x̂

�
= �2k0x̂+ ŷ �

a1
a2
k0;

3
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and

z1 inf = ẑ +m0(x1 inf � x̂)

= ẑ +m0

�
�a1
a2
� 2x̂

�
= �2m0x̂+ ẑ �

a1
a2
m0:

We therefore can write Dinf =MC � a1
a2
b; where

M =

0@ �1 0 0
�2k0 1 0
�2m0 0 1

1A and b =

0@ 1
k0
m0

1A (8)

Corollary. Given s > 0, consider same hypothesis as in Theorem 1 and let Einf = sC +
(1� s)Dinf . Then the a�ne transformation

AE = sI + (1� s)AD

is such that AE(C) = Einf , where I is the identity mapping from R3 to R3:

Proposition 2 In Theorem 1, if � is the ellipsoid x2

a2
+ y2

b2
+ z2

c2
= 1, then there exists a matrix

LeD =
�
leij
�
3�3 such that L

e
D C = Dinf :

Proof.
It follows from the direct calculations in exploration [S1] show that

x1inf =

�
a2c2 sin2(u0)� b2c2 cos2(u0)

�
sin2(v0) + a

2b2 cos2(v0)

�
x̂

� 2a
2c2 cosu0 sinu0 sin

2(v0)

�
ŷ

� 2a
2b2 cosu0 cos v0 sin v0

�
ẑ

y1inf = �
2b2c2 cosu0 sinu0 sin

2(v0)

�
x̂

+

�
b2c2 cos2(u0)� a2c2 sin2(u0)

�
sin2(v0) + a

2b2 cos2(v0)

�
ŷ

� 2a
2b2 sinu0 cos v0 sin v0

�
ẑ

z1inf = �
2b2c2 cosu0 cos v0 sin v0

�
x̂

� 2a
2c2 sinu0 cos v0 sin v0

�
ŷ

+

�
a2c2 sin2(u0) + b

2c2 cos2(u0)
�
sin2(v0)� a2b2 cos2(v0)

�
ẑ

4
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where � = (a2c2 sin2(u0) + b
2c2 cos2(u0)) sin

2(v0) + a
2b2 cos2(v0). Matrix L

e
D can be written as

1

�

0@M �

24 0 2a2c2 cosu0 sinu0 sin
2(v0) 2a2b2 cosu0 cos v0 sin v0

2b2c2 cosu0 sinu0 sin
2(v0) 0 2a2b2 sinu0 cos v0 sin v0

2b2c2 cosu0 cos v0 sin v0 2a2c2 sinu0 cos v0 sin v0 0

351A ;
where M is the 3� 3 diagonal matrix of the following entries:24 �a2c2 sin2(u0)� b2c2 cos2(u0)� sin2(v0) + a2b2 cos2(v0)�

b2c2 cos2(u0)� a2c2 sin2(u0)
�
sin2(v0) + a

2b2 cos2(v0)�
a2c2 sin2(u0) + b

2c2 cos2(u0)
�
sin2(v0)� a2b2 cos2(v0)

35 :
Corollary. Given s > 0, consider same hypothesis as in Proposition 2 and let Einf =

sC + (1� s)Dinf . Then the matrix

LeE = sI + (1� s)LeD (9)

is such that LeE C = Einf , and therefore, the locus surface �inf(s; u0; v0) is the image of � under
the linear transformation given by the matrix LeE = [l

e
ij]3�3. We may, therefore, call the linear

transformation that is associated with the matrix LeE to be an antipodal linear transformation.

Proposition 3 For s 2 R n f1g, the ellipsoid � and locus ellipsoid �inf(s; u0; v0) intersect
themselves tangentially at an elliptical curve.

Proof. The proposition was already proved when point A = (x0; y0z0) is at in�nity on
x� axis; y� axis or z� axis respectively in [12], so we can suppose that u0 2 (0; 2�)�f�2 ;

3�
2
g

and v0 2 (0; �).
Let us determine the points C 2 � such that

C = Einf = sC + (1� s)Dinf ;

that is, such that (1 � s)C = (1 � s)Dinf . For s 6= 1, this implies that LeD C = Dinf , which
is consistent with direct calculations in [S2] that LeD has the eigenvalue �1 = �1 of multiplic-
ity 1 with associated eigenvector v1 = [cosu0 tan v0; sinu0 tan v0; 1]

t : In addition, LeD has the
eigenvalue �2 = 1 of multiplicity 2 with the following associated eigenvectors

v2 =

�
�a2
c2

sec u0 cot v0; 0; 1

�t
; and

v3 =

�
�a

2

b2
tanu0; 1; 0

�t
:

The intersection of the plane generated by v2 and v3 with the ellipsoid � is the elliptical curve

:
= a;b;c;u0;v0(x(t); y(t); z(t)), with

x = t; (10)

y = � b2 cos v0 �(t)� �(t)
a2c2 sin2 u0 sin

2 v0 + a2b2 cos2 v0
;

z = � c2 sinu0 sin v0 (b
2 cos v0 �(t) + �(t))

b2 cos v0
�
a2c2 sin2 u0 sin

2 v0 + a2b2 cos2 v0
� � c2

a2
cosu0 (tan v0) t;

5
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where

�(t)
:
=
q��

�a2c2 sin2 u0 � b2c2 cos2 u0
�
sin2 v0 � a2b2 cos2 v0

�
t2 + a4c2 sin2 u0 sin

2 v0 + a4b2 cos2 v0

and
�(t)

:
= b2c2 cosu0 sinu0

�
sin2 v0

�
t:

Finally, we can verify that the gradient of � and �inf(s; u0; v0) are colinear when evaluated at
any point on .

Proposition 4 In Theorem 1, if � is the hyperboloid with two sheets x2

a2
+ y2

b2
� z2

c2
= �1, then

there exists a matrix LhD =
�
lhij
�
3�3 such that L

h
D C = Dinf :

Proof. We leave the proof to readers to explore.
Corollary. Given s > 0, consider same hypothesis as in Proposition 4, and let Einf =

sC + (1� s)Dinf . Then the matrix

LhE = sI + (1� s)LhD
is such that LhE C = Einf . In other words, the locus surface �inf(s; u0; v0) is the image of �
under the linear transformation given by the matrix LhE = [l

h
ij]3�3.

We remark that the exploration [S3] contains an animation to exemplify the result Propo-
sition 3. Analogous to the Proposition 3, we have the following:

Proposition 5 For s 2 R+nf1g, if the hyperboloid � and corresponding locus surface �inf(s; u0; v0)
intersect themselves, they do it tangentially at an hyperbolical curve.

Proof. The proposition was already proved when point A = (x0; y0z0) is at in�nity on
x�axis; y�axis or z�axis respectively in [12], so we may assume that u0 2 (0; 2�)�f�2 ;

3�
2
g

and v0 2 (0; �). Let us determine the points C 2 � such that

C = Einf = sC + (1� s)Dinf ;

that is, such that (1 � s)C = (1 � s)Dinf . For s 6= 1, this implies that LhD C = Dinf . Direct
calculations in Explorations [S4] and [S5] show that LhD has the eigenvalue �1 = �1 of multi-
plicity 1 with associated eigenvector and the eigenvalue �2 = 1 of multiplicity 2 with associated
eigenvectors

v2 =

�
a2

c2
sec u0 cot v0; 0; 1

�
and v3 =

�
�a

2

b2
tanu0; 1; 0

�
:

The intersection of the plane generated by v2 and v3 with the hyperboloid � of two sheets
is the hyperbolical curve 

:
= a;b;c;u0;v0(x(t); y(t); z(t)), with

x = t;

y = � b2 cos v0 �(t)� �(t)
a2c2 sin2 u0 sin

2 v0 � a2b2 cos2 v0
;

z =
c2

a2
cosu0 tan v0 t�

c2 sinu0 sin v0 (b
2 cos v0 �(t)� �(t))

b2 cos v0
�
a2c2 sin2 u0 sin

2 v0 � a2b2 cos2 v0
� ;

6



The Electronic Journal of Mathematics and Technology, Volume 16, Number 1, ISSN 1933-2823

where

�(t)
:
=
q��

a2c2 sin2 u0 + b2c2 cos2 u0
�
sin2 v0 � a2b2 cos2 v0

�
t2 + a4c2 sin2 u0 sin

2 v0 � a4b2 cos2 v0;

and
�(t)

:
= b2c2 cosu0 sinu0

�
sin2 v0

�
t:

The following observation is trivial.

Theorem 6 If s 2 R+nf1=2g; the locus surface �inf(s; u0; v0) for an ellipsoid � is also an
ellipsoid.

Proof. We consider the ellipsoid �; then it is well known result that � is an image under
a non-singular linear transformation T from a sphere S. In other words, � = T (S): Now for
s 2 R+nf1=2g; the transformation LeE is non-singular, and the locus �inf(s; u0; v0) = L

e
E (T (S)) ;

we see that the locus is the image of the sphere S under a non-singular linear transformation
and hence it is an ellipsoid too.
We shall prove that the locus surface for a hyperboloid with two sheets is indeed another

hyperboloid with two sheets. We prove the following with the help of [4] due to its complex
computations, complete computations can be found in [S4].

Theorem 7 If s 2 R+nf1=2g; the locus surface �inf(s; u0; v0) is also a hyperboloid of two
sheets.

Proof. The implicit equation of the locus surface �inf(s; u0; v0) is given by the quadratic
form

[x y z 1] Qh�

2664
x
y
z
1

3775 = 0 ; (11)

where

Qh� =

2664
lh11 lh21 lh31 0
lh12 lh22 lh32 0
lh13 lh23 lh33 0
0 0 0 1

3775
�1 2664

b2c2 0 0 0
0 a2c2 0 0
0 0 �a2b2 0
0 0 0 a2b2c2

3775
2664
lh11 lh12 lh13 0
lh21 lh22 lh23 0
lh31 lh32 lh33 0
0 0 0 1

3775
�1

:

We see from the exploration [S5] that the quadratic form becomes

Ax2 +Bxy + Cxz +Dy2 + Eyz + Fz2 + J

�
= 0

7
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where

A =
��
4a2b2c4s2 � 4a2b2c4s+

�
a2b2 � b4

�
c4
�
cos2 u0 � 4a2b2c4s2 + 4a2b2c4s� a2b2c4

�
sin2 v0

+
�
4a2b4c2s2 � 4a2b4c2s+ a2b4c2

�
cos2 v0;

B =
�
8a2b2c4s2 � 8a2b2c4s

�
cosu0 sinu0 sin

2 v0;

C =
�
8a2b4c2s� 8a2b4c2s2

�
cosu0 cos v0 sin v0;

D =
��
�4a2b2c4s2 + 4a2b2c4s +

�
a4 � a2b2

�
c4
�
cos2 u0 � a4c4

�
sin2 v0

+
�
4a4b2c2s2 � 4a4b2c2s+ a4b2c2

�
cos2 v0;

E =
�
8a4b2c2s� 8a4b2c2s2

�
sinu0 cos v0 sin v0;

F =
���
4a2b4 � 4a4b2

�
c2s2 +

�
4a4b2 � 4a2b4

�
c2s+

�
a2b4 � a4b2

�
c2
�
cos2 u0+

4a4b2c2s2 � 4a4b2c2s+ a4b2c2
�
sin2 v0 � a4b4 cos2 v0;

J =
���
4a4b2 � 4a2b4

�
c4s2 +

�
4a2b4 � 4a4b2

�
c4s+

�
a4b2 � a2b4

�
c4
�
cos2 u0�

4a4b2c4s2 + 4a4b2c4s� a4b2c4
�
sin2 v0 +

�
4a4b4c2s2 � 4a4b4c2s+ a4b4c2

�
cos2 v0;

� =
���
4b2 � 4a2

�
c2 cos2 u0 + 4a

2c2
�
sin2 v0 � 4a2b2 cos2 v0

�
(s� 1=2)2 :

It follows from the hypothesis that � 6= 0, so the implicit equation of the locus surface can be
written as,

[x y z 1]

2664
A B=2 C=2 0
B=2 D E=2 0
C=2 E=2 F 0
0 0 0 J

3775
2664
x
y
z
1

3775 = 0 : (12)

Following [8], we see that

�3
:
= rank

24 A B=2 C=2
B=2 D E=2
C=2 E=2 F

35 = 3; �4 := rank
2664

A B=2 C=2 0
B=2 D E=2 0
C=2 E=2 F 0
0 0 0 J

3775 = 4; (13)

and furthermore we use [3] to compute the determinant of

2664
A B=2 C=2 0
B=2 D E=2 0
C=2 E=2 F 0
0 0 0 J

3775 to be

� a
6b6c6

2s� 1 ; which is negative if s >
1
2
: Hence, we conclude that locus surface �inf(s; u0; v0) is

another copy of hyperboloid with two sheets. We use the following example to illustrate the
relationship between the hyperboloid of two sheets and its corresponding locus.

Example 8 We consider the hyperboloid with two sheets of x
2

a2
+ y2

b2
� z2

c2
+1 = 0 with a = 5; b =

4; c = 3; u0 =
�
6
and v0 =

�
3
. We shall �nd the corresponding locus surface when s = 2 and the

intersecting curve between these two surfaces.

8
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1. We follow Theorem 6 to �nd the locus surface when s = 2 below:

172 800

371

p
3Y

�
X � 50

27
Z

�
+
112464X2

371
� 614400XZ

371
+
51525Y 2

371
+
6455600Z2

3339
�3600 = 0:

(14)

2. Next we apply Proposition 5 to �nd the plane spanned by the eigenvectors fv2; v3g, and
then �nd the intersecting curve between the original surface and its locus surface when
s = 2: We refer readers to [S7] and [S7.1] for further explorations.

3. It is also worth noting that we can �nd the intersecting curves between the original hy-
perboloid with two sheets and its corresponding locus directly without using the concepts
of eigenvectors. We follow the idea in [12] to �nd the intersection between the surface

F (x; y; z) = x2

a2
+ y2

b2
� z2

c2
+ 1 = 0 and the tangent plane, T (x; y; z) = OF (x; y; z) �

(x� x0; y � y0; z � z0) = 0; that is passing through the �xed point

A = (x0; y0; z0) = (� sin v0 cosu0; � sin v0 sinu0; cos v0� cos v0) ;

and next we let �!1:We see from [S5.1] that intersecting curve consist of four branches,
which are shown in blue curves in Figure 1, and we refer readers to [S5.1] and [S6] for
further explorations. We use [3] to plot the locus for the hyperboloid with two sheets (in
yellow), the original hyperboloid with two sheets (in red) and the intersecting curve in
blue in Figure 1 below.

Figure 1. Hyperboloid with two sheets
and its locus

3.1 Some observations from the linear transformations

Theorem 9 Suppose � is an ellipsoid of x
2

a2
+ y2

b2
+ z2

c2
= 1 in the standard form. Let the �xed

point A be at an in�nity with the �xed (u0; v0) direction, and let L
e
E be the linear transformation

9
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that maps points on � to the locus surface with respect to A. For a given s; we have the following
observations. We omit the proofs except (2) since they are either direct computations from a
CAS or simple observations.

1. The eigenvalues for LeE are f2s�1; 1; 1g and the corresponding eigenvectors are as follows:

v1 = [cosu0 tan v0; sinu0 tan v0; 1]
t ; (15)

v2 =

�
�a2
c2

sec u0 cot v0; 0; 1

�t
;

v3 =

�
�a

2

b2
tanu0; 1; 0

�t
:

We remark that the eigenvectors v1; v2 and v3 are invariant under the parameter s; and
invite readers to explore geometrically why LeE (v2) = v2 and L

e
E (v3) = v3 respectively.

2. When s = 1
2
; the locus surface becomes the elliptical disk bounded by intersecting elliptical

curve.

Proof.

Given C 2 �, there exist �1; �2; �3 such that C = �1v1 + �2v2 + �3v3. Then we see

Einf = L
e
E C = �1L

e
E v1 + �2L

e
E v2 + �3L

e
E v3 = �1(2s� 1)v1 + �2v2 + �3v3

For s = 1
2
,

Einf = �2v2 + �3v3

that is, Einf is the projection of C in the plane spanned by v2 and v3.

3. The intersecting curve between � and its locus surface �inf(s; u0; v0) lie on the plane P
spanned by the eigenvectors v2 and v3 corresponding to repeated eigenvalue 1:

4. When the eigenvectors fv1; v2; v3g are orthogonal, the locus surface �inf(s; u0; v0) can be
expressed in its standard form using fv1; v2; v3g as the directions of their respective axes.

We state a result, which will be needed later, from [12] when A is at an in�nity as follows:

Theorem 10 For s > 0 given, let � be the sphere x2 + y2 + z2 = r2, A1 be at the in�nity on
the z axis, and A = (� sin v0 cosu0; � sin v0 sinu0; � cos v0) when � ! 1: We denote �1 to be
the locus surface of � with respect to A1 and � to be the locus surface of � with respect to A: If
Ry (v0) represents the rotation by v0 radians around y{axis, and Rz(u0) represents the rotation
by u0 radians around z{axis, then Rz (u0) �Ry (v0) (�1) = �:

We shall proceed to prove following observation:

Theorem 11 For arbitrary A (at in�nity or not), we denote the solid region with the boundary
of �(�; A; s) by �(�; A; s). If this region is convex, then we have � � �(�; A; s) when s > 1.

10
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Proof. Let C an arbitrary point in � with \antipodal" point D. Consider the locus points
E = sC + (1� s)D and E 0 = sD + (1� s)C, see Figure 2 below:

Figure 2. Idea of Theorem 10

A direct calculation shows that

C =
s

2s� 1E +
�
1� s

2s� 1

�
E 0:

Since �(�; A; s) is a convex set, and 0 < s=(2s�1) < 1 for s > 1, it follows that C 2 �(�; A; s).
Corollary We consider the �xed point A to be at an in�nity with the �xed (u0; v0) direction,

and s > 1: Let us denote by

�inf(s; u0; v0) =
�
(x; y; z) 2 R3 : F (x; y; z; s; u0; v0) � 1

	
(16)

the solid ellipsoid with its boundary of �inf(s; u0; v0). Then we have � ( �x;inf when s > 1.

Theorem 12 For arbitrary A (at in�nity or not) and let us denote by

� =

�
(x; y; z) 2 R3 : x

2

a2
+
y2

b2
+
z2

c2
� 1

�
the solid ellipsoid whose boundary is �. If s 2 [0; 1], Then �(�; A; s) � �.

Proof. Let E be an arbitrary point in �(�; A; s). By construction, there exist points C and
D in � such that E = sC + (1� s)D. Since � is a convex set, it follows that E 2 �.

Theorem 13 Suppose � is a hyperboloid with two sheets of x
2

a2
+ y2

b2
� z2

c2
= �1 in the standard

form. Let the �xed point A be at in�nity with �xed (u0; v0) and let L
h
E be the linear transfor-

mation that maps points on � to the locus surface with respect to A. For a given s; we have
the followings:

1. The eigenvalues for LhE are f2s�1; 1; 1g and the corresponding eigenvectors are as follows:
v1 = [cosu0 tan v0; sinu0 tan v0; 1]

t ; (17)

v2 =

�
a2

c2
sec u0 cot v0; 0; 1

�t
; (18)

v3 =

�
�a

2

b2
tanu0; 1; 0

�t
: (19)

11
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2. For s = 1
2
.

(a) If � and �inf(s; u0; v0) intersect, the locus surface becomes the hyperbolic plane
region bounded by intersecting hyperbolic curve.

(b) If � and �inf(s; u0; v0) do not intersect, the locus surface becomes the plane P
spanned by the eigenvectors v2 and v3 corresponding to the repeated eigenvalue 1:

3. When � and �inf(s; u0; v0) intersect, the intersecting curve between them lie on the plane
P spanned by the eigenvectors v2 and v3 corresponding to eigenvalue 1:

4. When the eigenvectors fv1; v2; v3g are orthogonal, the locus surface �inf(s; u0; v0) can be
expressed in its standard form using fv1; v2; v3g as directions of their respective axes .

3.2 Locus Surface for an ellipsoid when s 6= 1
2

To complement the result we have shown in Theorem 6, we show here directly that the locus
surface for an ellipsoid, when the parameter s 6= 1

2
; under the antipodal linear transformation,

is another ellipsoid. We �rst note that the implicit equation of the ellipsoid �inf(s; u0; v0) is
given by the quadratic form

(X�)Qe� (X
�)T = 0 ; (20)

where X� = [X Y Z 1] and

Qe� =

2664
le11 le21 le31 0
le12 le22 le32 0
le13 le23 le33 0
0 0 0 1

3775
�1 2664

b2c2 0 0 0
0 a2c2 0 0
0 0 a2b2 0
0 0 0 �a2b2c2

3775
2664
le11 le12 le13 0
le21 le22 le23 0
le31 le32 le33 0
0 0 0 1

3775
�1

:

1. The key is to compute (X�)Qe� (X
�)T = 0 and collect the coe�cients of xiyj; where i; j

are non-negative integers and i+ j = 0; 1; 2:

2. First, we shall write the 4 by 4 symmetric matrix Qe� = [qij]; where i; j = 1; 2; 3; 4;

explicitly. To begin, we let �e = 4
�
s� 1

2

�2� c2 (cos2(v0)� 1) (a2 � b2) (cosu0)2
+a2

�
(b2 � c2) (cos v0)2 + c2

� �
: Now

12
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we consider

q11 =

2664
0@ 4 (cos2 v0 � 1) c4

��
s� 1

2

�2
a2b2 � b4

4

�
cos2 u0

+4a2 cos2 v0

��
s� 1

2

�2
(b4c2 � b2c4)

� 1A
+b2c4

�
s� 1

2

�2
3775

�e
;

q22 =

2664
0BB@
4 (cos2 v0 � 1) c4

�
a4

4
�
�
s� 1

2

�2
a2b2

�
cos2 u0

+4a2 cos2 v0

�
a2b2c2

�
s� 1

2

�2 � a2c4

4

�
+a2c4

4

1CCA
3775

�e
;

q33 =

264
0B@ 4a2b2c2 cos2 u0 (a

2 � b2) (cos2 v0 � 1)
�
s� 1

2

�2
+4a2

��
�a2b2c2

�
s� 1

2

�2
+ a2b2

4

�
cos2 v0

�
+a2b2c2

�
s� 1

2

�2
1CA
375

�e
;

q12 =
a2b2c4s (s� 1) (cos2 v0 � 1) sinu0 cosu0

�e
;

q13 =
a2b4c2s (s� 1) (cos v0 sin v0 cosu0)

�e
;

q23 =
a4b2c2s (s� 1) (cos v0 sin v0 sinu0)

�e
;

q14 = q24 = q34 = 0; and q44 = �a2b2c2: (21)

3. With the help of an CAS, we now compute (X�)Qe� (X
�)T = 0 when s 6= 1

2
. If we let

� =
1

4 c2 (cos (v0 )� 1) (cos (v0 ) + 1) (a� b) (a+ b) (cos (u0 ))2
+4

�
(b2 � c2) (cos (v0 ))2 + c2

�
a2

; (22)

then XQe�X
T = 0 becomes

�

�
s� 1

2

��2
� L = 0; (23)

13
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where

L =

0BBBBBBBBBBBBBBBBB@

4 (cos (v0 )� 1)

0@ � �
� (s� 1=2)2 b2 + 1=4Y 2

�
a4

+(s� 1=2)2 b2 (X2 � Y 2 + b2) a2 � 1=4X2b4

�
c2

+a2 (s� 1=2)2 (a+ b) b2Z2 (a� b)

1A
c2 (cos (v0 ) + 1) (cos (u0 ))

2

+8Xa2b2c2s (�1 + s)�
(cos (v0 ))

2 sin (u0 )Y c
2 � sin (v0 )Zb2 cos (v0 )� sin (u0 )Y c2

�
cos (u0 )

+4 a2

0BBBB@
� ��

(s� 1=2)2 b2 � 1=4Y 2
�
a2 � (s� 1=2)2 b2X2

�
c4

+((Y 2 � Z2 � b2) a2 +X2b2) (s� 1=2)2 b2c2 + 1=4Z2a2b4
�

(cos (v0 ))
2 � 2 sin (u0 ) sin (v0 )Y Za2b2c2s (�1 + s) cos (v0 )

+

� ��
� (s� 1=2)2 b2 + 1=4Y 2

�
a2 + (s� 1=2)2 b2X2

�
c2 + a2 (s� 1=2)2 b2Z2

�
c2

1CCCCA

1CCCCCCCCCCCCCCCCCA

:

(24)
We follow the idea from Proposition 7, it indeed shows the locus surface is an ellipsoid
when s 6= 1

2
. It is clear from (23) that the major, minor and mean axes for this locus

surface depends on the parameter s:

Remarks:

1. As s ! 1
2
; the locus ellipsoid is getting closer to the elliptical disk bounded by the

intersecting elliptical curve.

2. Similar observation can be said about the transformation LhE; we leave this to readers to
explore.

4 Geometric Interpretation When s is Large

We recall that for a �xed s; we note that the linear transformations LeE or L
h
E involves the

parametric equations, providing us information regarding the eigenvalues for LeE or L
h
E of f2s�

1; 1; 1g and their corresponding eigenvectors. In this section, we will discuss the geometric
interpretation when the parameter s is is a larger value with s > 1:
We �rst make use of (20) or (11) to get the implicit equation of the locus surfaces from

the implicit equation of the original surfaces. We then attempt to use a CAS to compute the
eigenvectors for Qe� or Q

h
� respectively. However, it is too much for a CAS to compute the

eigenvalues and eigenvectors for Qe� or Q
h
� due to the large number of parameters. Instead, we

use the following two numerical Examples below, to show how we can write the locus surface
for an ellipsoid or a hyperboloids with two sheets in standard forms as an application of the
Principal axis theorem [6]. These examples con�rm our conjecture that the locus for an ellipsoid
when s is large, will be another long ellipsoid containing the original ellipsoid.

Example 14 Consider the our locus surface for the ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1;

14
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with s = 20; a = 5; b = 4; c = 3 and the �xed point is at the in�nity when u0 =
�
3
; v0 =

�
4
. The

numerical approximation of Qe� is2664
135:4334986093818 �23:18377445571889 �47:5916743923231 0

�23:18377445571889 162:2570698929334 �128:7987469762161 0
�47:5916743923231 �128:7987469762161 135:6018089315383 0

0 0 0 �3600

3775 :
The equation XQe�X

T = 0 of the locus ellipsoid becomes

135:4334986x2 � 46:36754892xy� 95:18334882xz+162:2570699y2 � 257:597494yz+135:6018089z2 � 3600 = 0:

Let us note that computing eigenvalues and eigenvectors of a matrix is subject to numerical
errors. In fact, some built in functions implemented to this end may produce weird results (for
example, complex solutions for a real symmetric matrix). So, using a suitable built in function
to approximate the eigenvalues and eigenvectors of matrix Qe� (in this case eigens by jacobi
built in maxima function) we got,

�1 = 0:1987812414007027;

�2 = 153:0821898482854;

�3 = 280:0114063441675;

�4 = �3600:

The corresponding unit eigenvectors are written as column vectors respectively below2664
0:3537757151666001 �0:9290517690585807 �0:1081922075173726 0
0:6124527321391638 0:3175226342422298 �0:7239344083818289 0
0:7069260175249132 0:1898477999688088 0:6813320912692791 0

0 0 0 1

3775 = � w1 w2 w3 0
0 0 0 1

�
:

Using the rotated system of coordinates ~x{~y{~z determined by eigenvectors w1; w2; w3, we got
the equation of the locus ellipsoid in standard form �1~x

2 + �2~y
2 + �3~z

2 = ��4, or

~x2�q
��4
�1

�2 + ~y2�q
��4
�2

�2 + ~z2�q
��4
�3

�2 = 1: (25)

Note thatr
��4
�1

= 134:5747405338178 >

r
��4
�2

= 4:849410151798864 >

r
��4
�3

= 3:585612795294109:

It follows from the direct calculations using Maxima [4] in [S2] that the angle between w1 and
eigenvector v1 = [cosu0 tan v0; sinu0 tan v0; 1]

t for LeE: is equal to 0:0002975755987288942 radi-
ans. Therefore, we obtain the longest major semi{axis length in this case to be 134:5747559614472

15
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as shown in the following Figure 3. We note that the CAS [3] does con�rm the numeric com-
putations when number of Digits is increased from default 10 to 15, see [S2.1].

Figure 3. Locus ellipsoid when
s = 20; a = 5; b = 4; c = 3; u0 =

�
3

and v0 =
�
4

This example indeed shows that the locus ellipsoid surface gets longer as s increases.
Remarks:

1. Example 13 suggests that when s gets large, the eigenvector corresponds to the longest
major semi{axis for the locus surface, after being written in the standard form (25), will
approach the eigenvector v1 = [cosu0 tan v0; sinu0 tan v0; 1]

t from LeE; as expected.

2. In the preceding Example 13, the angle between the eigenvector of the locus ellip-
soid w1 and eigenvector v1 = [cos u0 tan v0; sinu0 tan v0; 1]

t for LeE: is approximately
0:0002975755987288942 radians when s = 20: It is natural for readers to explore that
if the tolerance of the angle between w1 and v1 is given, we can �nd the desired parame-
ter s to satisfy the requirement. To explore further geometrically, we refer to [S3].

4.1 Locus surface for a hyperboloid with two sheets when s is large

Example 15 Consider the our locus surface for the hyperboloid of two sheets

x2

a2
+
y2

b2
� z

2

c2
= �1;

16
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with s = 20; a = 5; b = 4; c = 3 and the �xed point is at the in�nity when u0 =
�
6
; v0 =

�
3
. The

numerical approximation of Qh� is2664
�358:6989266108146 �453:4896259352358 930:9239381629927 0
�453:4896259352358 �184:0974337674445 839:795603583711 0
930:9239381629927 839:795603583711 �2123:933218812494 0

0 0 0 3600

3775 :
It follows from [S5] and [S5.1] that the equation X Qh�X

T = 0 of the locus hyperboloid with two
sheets becomes

12650661x2+31987514:3142xy�65664000xz+6492782:8125y2�59236137:6189yz+74907275z2�12696547:5 = 0:

The approximate eigenvalues and eigenvectors of matrix Qh� are,

�1 = 0:01525397670016254;

�2 = 195:179651674006;

�3 = �2861:924484841458;
�4 = 3600:

The corresponding unit eigenvectors are written as column vectors respectively below2664
0:7500323743583207 �0:5405430593677909 �0:3811359841103027 0
0:4330148784900295 0:8369014258696608 �0:3348045973154995 0
0:4999495498754701 0:08607673522292496 0:8617663507196585 0

0 0 0 1

3775 = � w1 w2 w3 0
0 0 0 1

�
:

Using the rotated system of coordinates ~x{~y{~z determined by eigenvectors w1; w2; w3, we got
the equation of the locus hyperboloid with two sheets in standard form �1~x

2+�2~y
2+�3~z

2 = ��4,
or

~x2�q
�4
�1

�2 + ~y2�q
�4
�2

�2 � ~z2�q
�4
��3

�2 = �1: (26)

Note thatr
�4
�1
= 485:8024615565034 >

r
�4
�2
= 4:294711361002595 >

r
�4
��3

= 1:121559104702658:

It follows from direct calculations using [4] in exploration [S5] that the angle between w1
and eigenvector v1 = [cosu0 tan v0; sinu0 tan v0; 1]

t for LhE is equal to 0:0005998376145854856
radians. So, we obtain the longest major semi{axis length in this case to be 485:8024615565034

17
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as shown in the following Figure 4. To explore further geometrically, see [S6].

Figure 4. Locus surface for a hyperboloid
with two sheets when s = 20

Remarks:

1. After the locus surface for an ellipsoid is written in standard quadratic form, when s

increases, the length of the major axis,
q

��4
�1
; also increases.

2. As we see from Example 13 for the ellipsoid when s = 20; the eigenvector corresponding

to the largest major axis will be close to v1 =

2664
cosu0 tan v0
sinu0 tan v0

1
0

3775 : This observation is
consistent with the eigenvalue, 2s�1; and eigenvector, v1 = [cosu0 tan v0; sinu0 tan v0; 1]t ;
for LeE: In other words, when s increases, the major axis for the ellipsoid converges to the
direction of the eigenvector v1:

3. Similar observations can be done for the Locus surface of a hyperboloids with two sheets
when s is large, say s = 20: We leave it to the readers to explore this situation in more
detail. In the following, we explore what happens to the locus surfaces when s!1:

4.2 Locus surfaces in the limit as the parameter s!1
It is expected that it is too complicated for a CAS to compute the eigenvectors for Qe� and Q

h
�;

respectively, directly if we let s!1: Instead, we take s!1 for each entry of2664
A B=2 C=2 0
B=2 D E=2 0
C=2 E=2 F 0
0 0 0 J

3775 (27)

18
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for Qe� and Q
h
� respectively �rst, and �nd the corresponding eigenvalues and eigenvectors. We

label such 4 � 4 matrices as (Qe�)
0 and

�
Qh�
�0
respectively. Accordingly, we label the 3 � 3

matrix 24 A B=2 C=2
B=2 D E=2
C=2 E=2 F

35 (28)

of (Qe�)
0 and

�
Qh�
�0
by (Qe�)

00 and
�
Qh�
�00
respectively. Since we are letting the parameter

s ! 1; in order to categorize the locus surfaces correctly, we need to examine the conditions
mentioned in [8] carefully. We see the ranks of (Qe�)

0 and
�
Qh�
�0
are now 3 instead of the original

4. (For calculations of the ranks, please see [S2.1] and [S5.1] respectively.)

1. For the ellipsoid case of (Qe�)
0 ; we refer to the computations obtained in [S2] and [S2.1]

that the product of two non-zeros eigenvalues to be

a4b4c4�
a2c2 sin2(u0) + cos2(u0)b2c2

�
sin2(v0) + cos2(v0)a2b2

> 0; (29)

(a) It follows from [8] that the locus surface in this case is called an elliptical cylinder.

We can see that the eigenvector X =

2664
cosu0 tan v0
sinu0 tan v0

1
0

3775 corresponds to the eigenvalue
0: Since we have (Qe�)

0X = 0; this transformation sends the vector X to the origin,
and consequently the locus surface becomes an open ended elliptical cylinder. We
note that the base is an ellipse which is spanned by the other two eigenvectors.

(b) We depict the locus elliptical cylinder (yellow) when a = 5; b = 4; c = 3; with
u0 =

�
6
; v0 =

�
3
together with the original ellipsoid (blue) in Figures 5(a) and 5(b).

The observation of the rank of (Qe�)
0 implies the locus surface to be an elliptical

cylinder, which is consistent with the observation from [8]. For exploration, see
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[S2.1] and [S3].

Figure 5(a). The original ellipsoid
and its locus when s!1:

Figure 5(b). The ellipsoid and its locus
are tangent to each other

Figure 5(c). Ellipsoid and when
locus surfaces s!1

(c) In [S2], we show that the cross product of the respective gradients, of the � and
its locus surface �inf(s; u0; v0) at the point on the intersecting curve, is 0: In [S3.1],
we simulate the locus ellipsoid surface in green will go toward the ellipsoid cylinder
when s!1: Moreover, readers can visualize that the respective gradients of the �
and its locus surface �inf(s; u0; v0); at a point on the intersecting curve, are parallel.

(d) Since the locus surface becomes a di�erent geometric structure when s ! 1, we
leave it to the readers to verify that the property of Proposition 3 does hold as we
see in Figure 5(b). In the exploration [S3.1], readers can adjust the slider for s to
simulate that the locus ellipsoid surface in green will go toward the ellipsoid cylinder
(in blue) when s!1 as shown in Figure 5(c).

(e) Furthermore, as we see from (23) that the locus surface is not de�ned when s = 1
2
:

In fact, the locus becomes the elliptical disk bounded by intersecting elliptical curve
as we have shown in (10) that the elliptical disk is spanned by fv2; v3g:We also note
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that the eigenvalue is 0 when s = 1
2
for the eigenvector v1: In other words, we are

looking at
LeEv1 = 0: (30)

In this case, we are sending v1 back to the origin. Therefore, we obtain a two
dimensional elliptical disk in this case.

2. As for the case of
�
Qh�
�0
; we follow the ideas from [8], and we are able to compute the

ranks for
�
Qh�
�00
and

�
Qh�
�0
to be 2 and 3 respectively, and det

��
Qh�
�0�

= 0 using [3],

see [S5.1]. However, the signs of the two non-zeros eigenvalues for
�
Qh�
�00
; �1 and �2 (see

[S5.1]), cannot be determined to be the same or not.

(a) For example, if we use a = 5; b = 4; c = 3; u0 =
�
6
and v0 =

�
3
; we see �1 � �2 =

�558921:8353 < 0: On the other hand, if we use a = 5; b = 4; c = 3; u0 =
�
6
and

v0 =
�
3
; we see �1 � �2 = 109946:9778 > 0: (See [S5.1] for computations.) Therefore,

it is inconclusive to categorize the locus surface for a hyperboloid with two sheets,
when s!1 and the �xed point is at an in�nity.

(b) If we use a = 5; b = 4; c = 3; u0 =
�
6
and v0 =

�
3
; when �1 ��2 < 0; as demonstration.

The locus surface is categorized as a hyperbolic cylinder. We see that the eigenvector

X =

2664
cosu0 tan v0
sinu0 tan v0

1
0

3775 corresponds to the eigenvalue 0: Hence, �Qh��0X = 0 means

that the transformation sends X to the origin. In this case, we depict the locus of
hyperbolic cylinder (since �1 � �2 < 0) in yellow, and the original hyperboloid with
two sheets in red in Figure 6(a).

(c) We show the original surface in red and its corresponding locus in yellow in Figure
6(a). Furthermore, we show the intersecting curves, in blue, between these two
surfaces in Figure 6(b). We refer readers to [S5.1] for further exploration. We
also leave it to the readers to verify that the property of Proposition 5 does hold
when s ! 1 and the surfaces � and its locus surface �inf(s; u0; v0) intersect at
a hyperbola. We refer readers to [S5.1], [S6] and [S6.1] for further explorations.
In [S6.1], readers can visualize that the respective gradients of the � and its locus
surface �inf(s; u0; v0); at points on the intersecting hyperbolic curve, are parallel.
Equivalently, we show in [S5] that the cross product of the respective gradients, of
the � and its locus surface �inf(s; u0; v0) at the points on the intersecting hyperbolic
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curve, is 0:

Figure 6(a). Locus hyperbolic cylinder
when u0 =

�
6
; v0 =

�
3
and s!1:

Figure 6(b). Locus hyperbolic
cylinder when u0 =

�
6
; v0 =

�
3
and

s!1:

5 Conclusion

The antipodal locus problems when the �xed point is at an in�nity discussed in this paper
de�nitely provides interesting areas in projective geometry, see [2], and it can lead to further
explorations in algebraic geometry. As we have discussed in this paper that the ellipsoid �
and its locus ellipsoid �inf(s; u0; v0) intersect at an elliptic curve when the direction (u0; v0) for
the �xed A at in�nity and s are given. One may ask an inverse question as follows: Suppose
the original ellipsoid � is given, the linear transformation LeE of 9 is applied when A is chosen.
Then the locus ellipsoid �inf(s; u0; v0) is found. If we rotate the intersecting plane P; which
contains the elliptic intersecting curve, by keeping the mean axis �xed, and tilting the minor
axis towards the major axis for �inf(s; u0; v0). How can we choose the �xed point A so that the
new plane P 0 intersects the ellipsoid in a round circle.
We also discussed the shape of a locus when the parameter s is large. Intuitively, the

locus surface for an ellipsoid will be a larger ellipsoid when s gets larger. Consequently, we
see that when s ! 1; the locus surfaces for an ellipsoid or a hyperboloid with two sheets
will change their topological structures as we saw in Section 4.2. Our investigations of these
situations with various technological tools were critical to the development of our intuition and
conjectures that were the foundation of our subsequent more rigorous analytical conclusions.
Here we have gained geometric intuitions while using a DGS such as [1]. In the meantime, we
use a CAS such as [3] or [4] for verifying that our analytical solutions are consistent with our
initial intuitions. Many of our solutions are accessible to students from high school. Others
require more advanced mathematics such as university levels, and are excellent examples for
professional trainings for future teachers.
It is a delight to see how a simple college entrance exam from China, after being explored

with technological tools (see [9]), has evolved into interesting problems in di�erent �elds, in-
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cluding projective geometry, di�erential geometry (see [11]), and possibly algebraic geometry.
Evolving technological tools de�nitely have made mathematics fun and accessible on one hand,
but they also allow the exploration of more challenging and theoretical mathematics. We hope
that when mathematics is made more accessible to students, it is possible more students will
be inspired to investigate problems ranging from the simple to the more challenging. We do
not expect that exam-oriented curricula will change in the short term. However, encouraging a
greater interest in mathematics for students, and in particular providing them with the techno-
logical tools to solve challenging and intricate problems beyond the reach of pencil-and-paper,
is an important step for cultivating creativity and innovation.
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7 Supplementary Electronic Materials

[S1] wxMaxima worksheet for Methods 1 and 2 in Section 2.

[S2] wxMaxima worksheet for ellipsoid case in Sections 3 and 4.

[S2.1] Maple worksheet for ellipsoid case in Sections 3 and 4.

[S3] GeoGebra worksheet for ellipsoid case in Sections 3 and 4.

[S3.1] GeoGebra worksheet for ellipsoid case in Section 4.2.

[S4] Maple worksheet for hyperboloid case in Section 3

[S5] wxMaxima worksheet for hyperboloid case in Sections 3 and 4.

[S5.1] Maple worksheet for hyperboloid case in Sections 3 and 4.

[S6] GeoGebra worksheet for hyperboloid case in Sections 3 and 4.

[S6.1] GeoGebra worksheet for hyperboloid case in Section 4.2.

[S7] wxMaxima worksheet for hyperboloid case in Example 7.

[S7.1] GeoGebra worksheet for Example 7.
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